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Abstract

We consider the solution of inviscid as well as viscous unsteady flow problems withmoving boundaries by the arbitrary

Lagrangian–Eulerian (ALE)method.We present two computational approaches for achieving formal second-order time-

accuracy on moving grids. The first approach is based on flux time-averaging, and the second one on mesh configuration

time-averaging. In both cases, we prove that formally second-order time-accurate ALE schemes can be designed. We

illustrate our theoretical findings and highlight their impact on practice with the solution of inviscid as well as viscous,

unsteady, nonlinear flow problems associated with the AGARD Wing 445.6 and a complete F-16 configuration.
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1. Introduction

In many computational fluid dynamics (CFD) applications, some or all of the boundaries delimiting the

physical domain of the flow move in time. Examples include, among others, a large class of free-surface

flow problems and a wide variety of fluid–structure interaction problems. When the moving boundaries
undergo large displacements and/or rotations, or when they experience large deformations, the flow

problem is often formulated in an arbitrary Lagrangian–Eulerian (ALE) [1,2] frame and discretized on an

unstructured moving grid. Such a discretization differs from that of the standard Eulerian formulation only

in the introduction of some geometric quantities involving the positions and velocities of the moving grid

points. For this reason, an ALE time-integrator is typically constructed by combining a preferred time-
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integrator for fixed grids computations and an ad hoc procedure for evaluating the geometric quantities

arising from the ALE formulation. As noted in [3,4], such an approach for designing an ALE time-inte-

grator does not necessarily preserve the order of time-accuracy of its fixed grid counterpart. To address this

issue, we present two different methods for extending to moving grids a preferred time-integrator while

preserving its order of time-accuracy established on fixed grids. These methods differ in the approaches they

adopt for time-integrating between time tn and time tnþ1 the convective, diffusive and source terms, when the

grid moves from a position xn to a position xnþ1 (here and in the remainder of this paper, the superscript n
designates the nth time-instance tn). For each time-interval ½tn; tnþ1�, the first method constructs a set of
intermediate mesh configurations, evaluates the numerical fluxes and source terms on each one of them,

then time-averages each set of these numerical quantities. Alternatively, the second method defines a unique

computational mesh configuration in the time-interval ½tn; tnþ1� by time-averaging the intermediate mesh

configurations themselves, then computes the numerical fluxes and source terms on this time-averaged mesh

configuration. In both methods, the geometric quantities arising from the ALE formulation, the parameters

governing the construction of the intermediate mesh configurations and the time-averaging procedure are

chosen as to guarantee that the resulting ALE time-integrator is formally p-order time-accurate on moving

grids, where p characterizes the underlying fixed grid time-integrator.
It turns out that for a given fixed grid time-integrator, each of the methods outlined above leads to

multiple ALE versions which preserve its order of time-accuracy on moving grids. However, it is interesting

to note that not all of these versions satisfy their discrete geometric conservation laws (DGCL). A DGCL

[5,6] states that the computation of the geometric parameters arising from an ALE formulation must be

performed in such a way that, independently of the mesh motion, the ALE numerical scheme preserves the

state of a uniform flow. Therefore, whereas in [6] the authors proved that satisfying the DGCL is a sufficient

condition for an ALE numerical scheme to be consistent on moving grids, and in [7,8] the authors proved

that this law is a necessary and sufficient condition for some ALE numerical schemes to preserve on moving
grids the nonlinear stability of their fixed grid counterparts, in this paper we show that the DGCL is neither

a necessary nor a sufficient condition for an ALE numerical scheme to preserve on moving grids its order of

time-accuracy established on fixed grids. Hence, an additional contribution of this paper is a further

characterization of the DGCL.

We organize the remainder of this paper as follows. In Section 2, we overview the ALE formulation of

the Navier–Stokes equations and specify the semi-discretization method adopted in this work. In Section 3,

we expose the two approaches outlined above for extending to moving grids a time-integrator developed for

fixed grids, while preserving its order of time-accuracy established on fixed meshes. We perform in Section 4
the accuracy analysis of both approaches for the case of the popular three-point backward difference

scheme. This error analysis, which is based on the investigation of the local truncation error as in [3], leads

to a couple of ALE extensions of this scheme that are presented and contrasted with simpler ones in Section

5. In Section 6, we illustrate our theoretical findings and highlight their impact on practice with the solution

of inviscid as well as viscous, unsteady, nonlinear flow problems associated with the AGARD Wing 445.6

and an F-16 fighter. We conclude this paper in Section 7.
2. ALE method for the solution of flow problems on moving grids

2.1. ALE formulation of the Navier–Stokes equations

Let Xðx; tÞ � R3 � ½0;1½ be the instantaneous configuration where the coordinates of a point in space

are denoted by x ¼ ðxjÞj2f1;2;3g and time is denoted by t, and let Xðn; 0Þ be the reference configuration where

the coordinates of a point in space are denoted by n ¼ ðnjÞj2f1;2;3g and time is denoted by s. We define a

mapping function between Xðx; tÞ and Xðn; 0Þ as follows:
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x ¼ xðn; sÞ; t ¼ s; ð1Þ

and denote by J its determinant

J ¼ det
ox
on

� �
: ð2Þ

The ALE conservative form of the Navier–Stokes equations (possibly supplemented by a turbulence

model) can be written as

oJu
ot

����
n

þ Jrx � ðF ðuÞ � wuÞ ¼ Jrx � RðuÞ þ JSðuÞ; ð3Þ

where

w ¼ ox
ot

����
n

; ð4Þ

u denotes the conservative fluid state vector, F and R represent, respectively, the convective and diffusive
fluxes, and S denotes the source term associated with a turbulence model.

2.2. Semi-discretization

In this work, we consider the case where Eq. (3) is semi-discretized by a combination of the finite volume

method for the convective term, and the finite element method for the diffusive and source terms. In this

case, the resulting semi-discrete equations can be written as

d

dt
ðXiuiÞ þ fiðu; x;wÞ ¼ giðu; xÞ; ð5Þ

where Xi denotes the control volume of the ith cell associated with a given mesh, ui denotes the average
value of the fluid state vector over this cell, x and w are the vectors collecting the time-dependent values of

grid point positions and velocities, respectively, fi denotes the numerical convective flux, and gi represents
the numerical diffusive and source terms. We emphasize that here and throughout the remainder of this

paper, u; x and w represent discrete rather than continuous values. We note that a pure finite volume or a

pure (stabilized) finite element method leads to similar semi-discrete equations. We also note that when a

finite volume method is used to discretize the convective fluxes, Eq. (5) can be rewritten as

d

dt
ðXiuiÞ þ fiðu; m; jÞ ¼ giðu; xÞ; ð6Þ

where m and j ¼ w � m are, respectively, the vectors storing the discrete values of the normal and normal

velocity at the interfaces of the control volumes, and for simplicity the same notation for the numerical

convective flux is used. In general, the normal m is a nonlinear function u of the discrete mesh position vector

m ¼ uðxÞ: ð7Þ
3. Design of ALE time-integrators

In this paper, we focus on the extension to moving grids of the popular second-order time-accurate three-

point backward difference scheme. However, we note that the issues we raise, the methodologies we present,

and the solutions we propose equally apply to other fixed-grid time-integrators.
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The time-integration between tn and tnþ1 of the semi-discrete equations (5) or (6) raises the issue of where

to evaluate the terms fi and gi: on the mesh configuration xn at tn, or on xnþ1 at tnþ1, or in between these two

configurations, or outside these two configurations, or using a combination of all these mesh configura-

tions? We consider two approaches for addressing this issue, both of which begin with identifying and

evaluating two different sequences of mesh configurations: one sequence with Kf configurations for time-

integrating the convective fluxes, and one sequence with Kg configurations for time-integrating the diffusive

fluxes and source terms [9,10].

In the first approach, we evaluate the numerical convective, diffusive and source terms on each identified
mesh configuration, then time-average their values. Hence, assuming for simplicity but without any loss of

generality a constant time-step Dt, this approach applied to the three-point backward difference scheme

discretizes Eq. (5) into

3

2
ðXuÞnþ1

i � 2ðXuÞni þ
1

2
ðXuÞn�1

i þ Dt
XKf

k¼1

ak fiðunþ1; xðkÞf ;wðkÞÞ ¼ Dt
XKg

k¼1

bk giðunþ1; xðkÞg Þ; ð8Þ

where the kth mesh position xðkÞf , its corresponding velocity field wðkÞ, and the coefficients ak are associated
with the time-averaging of the convective fluxes, and the kth mesh position xðkÞg and the coefficients bk are

associated with the time-averaging of the diffusive and source terms.

In the second approach, we time-average each sequence of mesh configurations, then compute for each

time-averaged mesh configuration the corresponding convective flux or combined diffusive and source

terms. When applied to Eq. (6), this approach gives

3

2
ðXuÞnþ1

i � 2ðXuÞni þ
1

2
ðXuÞn�1

i þ Dt fiðunþ1; �mm; �jjÞ ¼ Dt giðunþ1;�xxÞ; ð9Þ

where

�mm ¼
XKf

k¼1

akuðxðkÞf Þ; ð10aÞ
�jj ¼
XKf

k¼1

ak wðkÞ � uðxðkÞf Þ; ð10bÞ
�xx ¼
XKg

k¼1

bk x
ðkÞ
g : ð10cÞ

In principle, each of the approaches described above for designing an ALE time-integrator applies to

both forms (5) and (6) of the semi-discrete ALE form of the Navier–Stokes equations. However, to be

concise, we consider in this paper the application of the first approach to form (5) and that of the second

approach to form (6). In general, the two time-averaging approaches outlined previously lead to different

numerical ALE schemes because the terms fi and gi are nonlinear functions of the mesh position. The first

approach is more flexible and more general, but the second approach is computationally more efficient. In

both approaches, the mesh configurations and their weighting coefficients are unknowns that we propose
to determine by requiring that the resulting numerical scheme preserves the order of time-accuracy of its

fixed-grid counterpart. To this effect, we parameterize in both cases each kth mesh position and velocity

field as
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xðkÞf ¼ fnþ1
k xnþ1 þ fnkx

n þ fn�1
k xn�1; ð11aÞ
wðkÞ ¼ hnþ1
k xnþ1 þ hnkx

n þ hn�1
k xn�1

Dt
; ð11bÞ
xðkÞg ¼ gnþ1
k xnþ1 þ gnkx

n þ gn�1
k xn�1: ð11cÞ

The coefficients f, h, and g are so far unspecified. We note that the restriction of the above parameterization

to the mesh configurations at tn�1, tn, and tnþ1 is due to our focus on the three-point backward difference

scheme.
4. Error analysis

We start by considering the first approach in which the fluxes and source terms are time-averaged, and
state the following result.

Proposition 1. If the parameterization (11a)–(11c) satisfies

fnþ1
k þ fnk þ fn�1

k ¼ 1 8k; ð12aÞ
hnþ1
k þ hnk þ hn�1

k ¼ 0 8k; ð12bÞ
hnk þ 2hn�1
k ¼ �1 8k; ð12cÞ
XKf

k¼1

ak ¼ 1; ð12dÞ
XKf

k¼1

ak fnk
�

þ 2fn�1
k

�
¼ 0; ð12eÞ
XKf

k¼1

ak hnk
�

þ 4hn�1
k

�
¼ 0; ð12fÞ
gnþ1
k þ gnk þ gn�1

k ¼ 1 8k; ð12gÞ
XKg

k¼1

bk ¼ 1; ð12hÞ
XKg

bk gnk
�

þ 2gn�1
k

�
¼ 0 ð12iÞ
k¼1
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and the continuous functions Xu; f ; and g are sufficiently smooth; then the ALE version of the three-point

backward difference scheme ð8Þ is second-order time-accurate on moving grids.

Proof. Let

Wi ¼
3

2
ðXuÞiðtnþ1Þ � 2ðXuÞiðtnÞ þ

1

2
ðXuÞiðtn�1Þ þ Dt

XKf

k¼1

ak fiðuðtnþ1Þ; xf ðtðkÞÞ;wðtðkÞÞÞ

� Dt
XKg

k¼1

bk giðuðtnþ1Þ; xgðtðkÞÞÞ ð13Þ

denote the local truncation error where

xf ðtðkÞÞ ¼ fnþ1
k xðtnþ1Þ þ fnkxðtnÞ þ fn�1

k xðtn�1Þ; ð14aÞ
wðtðkÞÞ ¼ hnþ1
k xðtnþ1Þ þ hnkxðtnÞ þ hn�1

k xðtn�1Þ
Dt

; ð14bÞ
xgðtðkÞÞ ¼ gnþ1
k xðtnþ1Þ þ gnkxðtnÞ þ gn�1

k xðtn�1Þ: ð14cÞ

with tðkÞ denoting the fictitious time associated with the kth mesh configuration. If the continuous function

Xu is sufficiently smooth, ðXuÞi can be expanded around tnþ1 as follows:

ðXuÞiðtnÞ ¼ ðXuÞiðtnþ1Þ � Dt
d

dt
ðXuÞiðtnþ1Þ þ Dt2

2

d2

dt2
ðXuÞiðtnþ1Þ þOðDt3Þ; ð15Þ
ðXuÞiðtn�1Þ ¼ ðXuÞiðtnþ1Þ � 2Dt
d

dt
ðXuÞiðtnþ1Þ þ 2Dt2

d2

dt2
ðXuÞiðtnþ1Þ þOðDt3Þ: ð16Þ

It follows that

3

2
ðXuÞnþ1

i � 2ðXuÞni þ
1

2
ðXuÞn�1

i ¼ Dt
d

dt
ðXuÞiðtnþ1Þ þOðDt3Þ

¼ �Dtfiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞ þ Dtgiðuðtnþ1Þ; xðtnþ1ÞÞ þOðDt3Þ:
ð17Þ

Similarly, if the continuous functions f and g are sufficiently smooth, then

fiðuðtnþ1Þ; xf ðtðkÞÞ;wðtðkÞÞÞ ¼ fiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞ þ rxfiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞðxf ðtðkÞÞ � xðtnþ1ÞÞ

þ rwfiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞðwðtðkÞÞ � wðtnþ1ÞÞ þOðkxf ðtðkÞÞ � xðtnþ1Þk2

þ kwðtðkÞÞ � wðtnþ1Þk2Þ; ð18Þ

and

giðuðtnþ1Þ; xgðtðkÞÞÞ ¼ giðuðtnþ1Þ; xðtnþ1ÞÞ þ rxgiðuðtnþ1Þ; xðtnþ1ÞÞðxgðtðkÞÞ � xðtnþ1ÞÞ
þOðkxgðtðkÞÞ � xðtnþ1Þk2Þ: ð19Þ
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From the above results, it follows that

Wi ¼ Dt
XKf

k¼1

ak

 !"
� 1

#
fiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞ

þ Dtrxfiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞ
XKf

k¼1

ak xf ðtðkÞÞ
�"

� xðtnþ1Þ
�#

þ Dtrwfiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞ
XKf

k¼1

ak wðtðkÞÞ
�"

� wðtnþ1Þ
�#

� Dt
XKg

k¼1

bk

 !"
� 1

#
giðuðtnþ1Þ; xðtnþ1ÞÞ � Dtrxgiðuðtnþ1Þ; xðtnþ1ÞÞ

XKg

k¼1

bk xgðtðkÞÞ
�"

� xðtnþ1Þ
�#

þ Dt
XKf

k¼1

akOðkxf ðtðkÞÞ � xðtnÞk2 þ kwðtðkÞÞ � wðtnÞk2Þ � Dt
XKg

k¼1

bkOðkxgðtðkÞÞ � xðtnÞk2Þ þOðDt3Þ:

ð20Þ

Now, expanding the parameterization (14a)–(14c) into Taylor series as follows:

xf ðtðkÞÞ � xðtnþ1Þ ¼ ðfnþ1
k þ fnk þ fn�1

k � 1Þxðtnþ1Þ � Dtðfnk þ 2fn�1
k Þ _xxðtnþ1Þ þOðDt2Þ; ð21Þ
wðtðkÞÞ � wðtnþ1Þ ¼ 1

Dt
ðhnþ1

k þ hnk þ hn�1
k Þxðtnþ1Þ � ðhnk þ 2hn�1

k þ 1Þwðtnþ1Þ

þ Dt
2
ðhnk þ 4hn�1

k Þ _wwðtnþ1Þ þOðDt2Þ; ð22Þ

and

xgðtðkÞÞ � xðtnþ1Þ ¼ ðgnþ1
k þ gnk þ gn�1

k � 1Þxðtnþ1Þ � Dtðgnk þ 2gn�1
k Þ _xxðtnþ1Þ þOðDt2Þ; ð23Þ

where a dot designates a time-derivative and wðtnþ1Þ ¼ _xxðtnþ1Þ. Choosing the parameters f, h and g as to

satisfy the conditions (12a)–(12c) and (12g) makes all the quantities xf ðtðkÞÞ � xðtnÞ, wðtðkÞÞ � wðtnÞ and

xgðtðkÞÞ � xðtnÞ become OðDtÞ. Consequently, the local truncation error becomes

Wi ¼ Dt
XKf

k¼1

ak

 !"
� 1

#
fiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞ

þ Dt2
XKf

k¼1

ak fnk
�"

þ 2fn�1
k

�#
rxfiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞ _xxðtnþ1Þ

þ Dt2

2

XKf

k¼1

ak hnk
�"

þ 4hn�1
k

�#
rwfiðuðtnþ1Þ; xðtnþ1Þ;wðtnþ1ÞÞ _wwðtnþ1Þ

� Dt
XKg

k¼1

bk

 !"
� 1

#
giðuðtnþ1Þ; xðtnþ1ÞÞ

� Dt2
XKg

k¼1

bk gnk
�"

þ 2gn�1
k

�#
rxgiðuðtnþ1Þ; xðtnþ1ÞÞ _xxðtnþ1Þ þOðDt3Þ: ð24Þ
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Hence, from Eq. (24), it follows that if the conditions (12d)–(12f), (12h) and (12i) are also satisfied,

Wi ¼ OðDt3Þ and therefore the extension to moving grids of the three-point backward difference scheme is

second-order time-accurate on moving grids. �

Next, we consider the second approach in which the mesh configurations themselves are time-averaged,

and state the following result.

Proposition 2. If the parameterization (11a)–(11c) satisfies

fnþ1
k þ fnk þ fn�1

k ¼ 1 8k; ð25aÞ
XKf

k¼1

ak hnþ1
k

�
þ hnk þ hn�1

k

�
¼ 0; ð25bÞ
XKf

k¼1

ak hnk
�

þ 2hn�1
k

�
¼ �1; ð25cÞ
XKf

k¼1

ak ¼ 1; ð25dÞ
XKf

k¼1

ak fnk
�

þ 2fn�1
k

�
¼ 0; ð25eÞ
XKf

k¼1

ak hnk
�

þ 4hn�1
k

�
¼ 0; ð25fÞ
XKg

k¼1

bk gnþ1
k

�
þ gnk þ gn�1

k

�
¼ 1; ð25gÞ
XKg

k¼1

bk ¼ 1; ð25hÞ
XKg

k¼1

bk gnk
�

þ 2gn�1
k

�
¼ 0 ð25iÞ

and the continuous functions Xu; f ; and g are sufficiently smooth; then the ALE version of the three-point

backward difference scheme ð9Þ is second-order time-accurate on moving grids.

Proof. The local truncation error of the ALE scheme (9) is

Wi ¼
3

2
ðXuÞiðtnþ1Þ � 2ðXuÞiðtnÞ þ

1

2
ðXuÞiðtn�1Þ þ Dtfiðuðtnþ1Þ; �mmðtnþ1Þ; �jjðtnþ1ÞÞ � Dtgiðuðtnþ1Þ;�xxðtnþ1ÞÞ;

ð26Þ
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where

�mmðtnþ1Þ ¼
XKf

k¼1

akuðxf ðtðkÞÞÞ; ð27aÞ
�jjðtnþ1Þ ¼
XKf

k¼1

akwðtðkÞÞ � uðxðtðkÞÞÞ; ð27bÞ
�xxðtnþ1Þ ¼
XKg

k¼1

bkxgðtðkÞÞ: ð27cÞ

From the Taylor series

fiðuðtnþ1Þ; �mmðtnþ1Þ; �jjðtnþ1ÞÞ ¼ fiðuðtnþ1Þ; mðtnþ1Þ; jðtnþ1ÞÞ þ rmfiðuðtnþ1Þ; mðtnþ1Þ; jðtnþ1ÞÞð�mmðtnþ1Þ � mðtnþ1ÞÞ
þ rjfiðuðtnþ1Þ; mðtnþ1Þ; jðtnþ1ÞÞð�jjðtnþ1Þ � jðtnþ1ÞÞ
þOðk�mmðtnþ1Þ � mðtnþ1Þk2 þ k�jjðtnþ1Þ � jðtnþ1Þk2Þ; ð28Þ
giðuðtnþ1Þ;�xxðtnþ1ÞÞ ¼ giðuðtnþ1Þ; xðtnþ1ÞÞ þ rxgiðuðtnþ1Þ; xðtnþ1ÞÞð�xxðtnþ1Þ � xðtnþ1ÞÞ
þOðk�xxðtnþ1Þ � xðtnþ1Þk2Þ; ð29Þ

and

3

2
ðXuÞnþ1

i � 2ðXuÞni þ
1

2
ðXuÞn�1

i ¼ �Dtfiðuðtnþ1Þ; mðtnþ1Þ; jðtnþ1ÞÞ þ Dtgiðuðtnþ1Þ; xðtnþ1ÞÞ þOðDt3Þ;

ð30Þ

Wi can be rewritten as

Wi¼Dtrmfiðuðtnþ1Þ;mðtnþ1Þ;jðtnþ1ÞÞð�mmðtnþ1Þ�mðtnþ1ÞÞþDtrjfiðuðtnþ1Þ;mðtnþ1Þ;jðtnþ1ÞÞð�jjðtnþ1Þ�jðtnþ1ÞÞ
�Dtrxgiðuðtnþ1Þ;xðtnþ1ÞÞð�xxðtnþ1Þ�xðtnþ1ÞÞþDtOðk�mmðtnþ1Þ�mðtnþ1Þk2þk�jjðtnþ1Þ�jðtnþ1Þk2Þ
�DtOðk�xxðtnþ1Þ�xðtnþ1Þk2ÞþOðDt3Þ: ð31Þ

If condition (25d) is satisfied, then

�mmðtnþ1Þ � mðtnþ1Þ ¼
XKf

k¼1

ak uðxf ðtðkÞÞÞ
�

� uðxðtnþ1ÞÞ
�

¼
XKf

k¼1

ak rxuðxðtnþ1ÞÞðxf ðtðkÞÞ
�

� xðtnþ1ÞÞ þOðkxf ðtðkÞÞ � xðtnþ1Þk2Þ
	
; ð32Þ

and

�jjðtnþ1Þ � jðtnþ1Þ ¼
XKf

k¼1

ak wðtðkÞÞ � uðxf ðtðkÞÞÞ
�

� wðtnþ1Þ � uðxðtnþ1ÞÞ
�

¼
XKf

k¼1

ak ðwðtðkÞÞ
�

� wðtnþ1ÞÞ � uðxf ðtðkÞÞÞ
�
þ wðtnþ1Þ � ð�mmðtnþ1Þ � mðtnþ1ÞÞ: ð33Þ
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Now, performing the Taylor expansion of uðxf ðtðkÞÞÞ around uðxðtnþ1ÞÞ, recalling Eq. (21), and satisfying

condition (25a) transforms the above equation into

�jjðtnþ1Þ � jðtnþ1Þ ¼
XKf

k¼1

ak ðwðtðkÞÞ
�

� wðtnþ1ÞÞ � ðuðxðtnþ1ÞÞ þOðDtÞÞ
�
þ wðtnþ1Þ � ð�mmðtnþ1Þ � mðtnþ1ÞÞ:

ð34Þ

Finally, if condition (25h) is also satisfied, then

�xxðtnþ1Þ � xðtnþ1Þ ¼
XKg

k¼1

bk xgðtðkÞÞ
�

� xðtnþ1Þ
�
: ð35Þ

Hence, from Eqs. (32), (34) and (35) and Eqs. (21)–(23), it follows that the quantities �mmðtnþ1Þ � mðtnþ1Þ;
�jjðtnþ1Þ � jðtnþ1Þ and �xxðtnþ1Þ � xðtnþ1Þ are OðDt2Þ if the conditions (25b), (25c), (25e)–(25g) and (25i) are

satisfied, and therefore Wi ¼ OðDt3Þ, which proves that the ALE scheme (9) is second-order time-accurate
on moving grids. �

It is interesting to note that: (a) both Propositions 1 and 2 lead to similar if not identical conditions on

the parameterization (11a)–(11c), and (b) these conditions decouple the parameters associated with the
discretization of the convective fluxes from those associated with the discretization of the diffusive fluxes

and source terms.
5. Examples

Here, we consider six different extensions to moving grids of the three-point backward difference scheme.

The first two (schemes A and B) preserve its second-order time-accuracy, while the last four (schemes C–F)
destroy it. Schemes C and D do so by choosing values for the parameters a, f and h associated with the

discretization of the convective fluxes which violate some of the conditions (12a)–(12f) or (25a)–(25f).

Schemes E and F loose the second-order time-accuracy of their fixed grid counterpart by choosing values

for the parameters b and g associated with the discretization of the diffusive fluxes and source terms which

violate some of the conditions (12g)–(12i) or (25g)–(25i).

5.1. ALE extensions preserving the second-order time-accuracy

5.1.1. Scheme A

The restriction to the Euler equations of scheme A presented here was first derived in [9] without paying

formal attention to time-accuracy. It is compatible with both frameworks (8) and (9). It uses four mesh

configurations for discretizing the convective fluxes, and the mesh configuration at tnþ1 for discretizing the
diffusive fluxes and source terms. It is defined by

fnþ1
1 ¼ 1

2
1

�
þ 1ffiffiffi

3
p
�
; fn1 ¼

1

2
1

�
� 1ffiffiffi

3
p
�
; fn�1

1 ¼ 0; ð36Þ
fnþ1
2 ¼ 1

2
1

�
� 1ffiffiffi

3
p
�
; fn2 ¼

1

2
1

�
þ 1ffiffiffi

3
p
�
; fn�1

2 ¼ 0; ð37Þ
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fnþ1
3 ¼ 0; fn3 ¼

1

2
1

�
þ 1ffiffiffi

3
p
�
; fn�1

3 ¼ 1

2
1

�
� 1ffiffiffi

3
p
�
; ð38Þ
fnþ1
4 ¼ 0; fn4 ¼

1

2
1

�
� 1ffiffiffi

3
p
�
; fn�1

4 ¼ 1

2
1

�
þ 1ffiffiffi

3
p
�
; ð39Þ
hnþ1
1 ¼ hnþ1

2 ¼ 1; hn1 ¼ hn2 ¼ �1; hn�1
1 ¼ hn�1

2 ¼ 0; ð40Þ
hnþ1
3 ¼ hnþ1

4 ¼ 0; hn3 ¼ hn4 ¼ 1; hn�1
3 ¼ hn�1

4 ¼ �1; ð41Þ
gnþ1
1 ¼ 1; gn1 ¼ 0; gn�1

1 ¼ 0; ð42Þ

and

a1 ¼ a2 ¼
3

4
; a3 ¼ a4 ¼ � 1

4
; b1 ¼ 1: ð43Þ

The above parameters satisfying the conditions (12a)–(12i) and (25a)–(25i), scheme A presented here is
formally second-order time-accurate on moving grids. In [9], it is shown that this scheme satisfies its

DGCL. We also note that the two-dimensional version of this scheme was first derived in [3].

5.1.2. Scheme B

Scheme B presented here is also compatible with both frameworks (8) and (9). It employs only the mesh

configuration at tnþ1, and therefore is much simpler than scheme A. It is defined by

fnþ1
1 ¼ 1; fn1 ¼ 0; fn�1

1 ¼ 0; ð44Þ
hnþ1
1 ¼ 3

2
; hn1 ¼ �2; hn�1

1 ¼ 1

2
; ð45Þ
gnþ1
1 ¼ 1; gn1 ¼ 0; gn�1

1 ¼ 0; ð46Þ
and

a1 ¼ b1 ¼ 1: ð47Þ
The above parameters satisfying the conditions (12a)–(12i) and (25a)–(25i), scheme B specified here is
formally second-order time-accurate on moving meshes. However, from the results proved in [9], it follows

that this scheme does not satisfy its DGCL. Hence, satisfying its DGCL is not a necessary condition for an

ALE scheme to preserve the order of time-accuracy of its fixed grid counterpart.

5.2. ALE extensions loosing the second-order time-accuracy

5.2.1. Scheme C

Scheme C specified here uses the framework defined by Eq. (9) except for the computation of the normal

velocity (see Appendix A). It is based on one mesh configuration at tn for the discretization of the con-

vective fluxes, and one mesh configuration at tnþ1 for discretization of the diffusive and source terms. It is

defined by

fnþ1 ¼ 0; fn ¼ 1; fn�1 ¼ 0; ð48Þ
1 1 1
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gnþ1
1 ¼ 1; gn1 ¼ 0; gn�1

1 ¼ 0; ð49Þ

and

a1 ¼ b1 ¼ 1: ð50Þ

In Appendix A, we show that this scheme is formally first-order time-accurate on moving meshes and

satisfies its DGCL. This result is compatible with the theoretical result established in [6] given that a first-

order time-accurate scheme is a consistent scheme. More importantly, scheme C shows that satisfying its
DGCL is not a sufficient condition for preserving the order of time-accuracy.

5.2.2. Scheme D

The scheme presented here is compatible with both frameworks (8) and (9). It employs the mesh con-

figuration at tn for discretizing the convective fluxes, and the mesh configuration at tnþ1 for discretizing the

diffusive fluxes and source terms. Its parameters are given by

fnþ1
1 ¼ 0; fn1 ¼ 1; fn�1

1 ¼ 0; ð51Þ
hnþ1
1 ¼ 1; hn1 ¼ �1; hn�1

1 ¼ 0; ð52Þ
gnþ1
1 ¼ 1; gn1 ¼ 0; gn�1

1 ¼ 0; ð53Þ

and

a1 ¼ b1 ¼ 1: ð54Þ

The above parameters do not satisfy conditions (12e), (12f), (25e) and (25f). Hence, scheme D is not second-

order time-accurate on moving meshes. It is only first-order time-accurate and according to [9] it does not

satisfy its DGCL.

5.2.3. Scheme E

Scheme E specified below uses the same discretization as scheme A for the convective fluxes, but evaluates

the diffusive fluxes and source terms on the mesh configuration at tnþ1=2 [10]. Its parameters are given by

gnþ1
1 ¼ 1

2
; gn1 ¼

1

2
; gn�1

1 ¼ 0; ð55Þ

and

b1 ¼ 1: ð56Þ

The above parameters do not satisfy conditions (12i) and (25i). This scheme is formally first-order time-
accurate on moving meshes. It satisfies its DGCL [9].

5.2.4. Scheme F

Scheme F described here uses the same discretization as scheme A for the convective fluxes, but evaluates

the diffusive fluxes and source terms on the mesh configuration at tn. It is defined by

gnþ1
1 ¼ 0; gn1 ¼ 1; gn�1

1 ¼ 0; ð57Þ

and

b1 ¼ 1: ð58Þ
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The above parameters do not satisfy conditions (12i) and (25i). Scheme F presented here is formally first-

order time-accurate on moving grids. From the conditions given in [9], it follows that this scheme satisfies

its DGCL.
6. Applications

In order to illustrate the theoretical results presented in this paper, we consider here the solution of
inviscid as well as viscous, unsteady, nonlinear flow problems associated with the AGARDWing 445.6, and

a complete F-16 configuration. To this effect, we use the AERO-F flow solver developed at the University

of Colorado with aeroelastic applications in mind [11,12].

AERO-F is a domain decomposition based parallel three-dimensional Euler and Navier–Stokes solver

which features a combination of finite volume and finite element discretizations on unstructured tetrahedral

meshes. It blends an upwind scheme for the convective fluxes based on Roe�s approximate Riemann solver

[13] and a piecewise linear reconstruction of the flow variables in each control volume [14,15], with a P1

finite element Galerkin approximation of the diffusive fluxes and source terms [16,17,10]. It performs
turbulence modeling by solving the one-equation Spalart–Allmaras model [18] and coupling it with

Reichardt�s wall function [19] and Spalding�s wall boundary condition [20] for the eddy viscosity. Because

the governing equation for this turbulence model is similar to the averaged Navier–Stokes equations, it is

discretized in the same manner except for the use of a constant reconstruction in order to ensure the

positivity of the turbulence variable.

In principle, AERO-F is equipped with the ALE version of the three-point backward difference scheme

summarized in Section 5.1.1 (scheme A). However, for this study we have equipped AERO-F with all ALE

time-integrators presented in Section 5 (schemes B–F). Since these schemes are implicit, AERO-F must solve
at each time-step a system of nonlinear equations. For this purpose, it relies on various Newton-like methods.

A secondary objective of this paper is to highlight the effect of a certain usage of such methods on the time-

accuracy of a flow solver. One such Newton-like method uses a defect–correction procedure [21] in which the

Jacobianmatrix is obtained from the linearization of a first-order approximation method, and the right-hand

side is approximated by a second-order method. This approach results in a well-conditioned Jacobianmatrix,

and is characterized by a lower storage requirement than the Jacobian matrix obtained from the linearization

of a second-order approximation method. However, as most inexact Newton methods, it does not deliver a

quadratic convergence rate. Another inexact Newton method employed by AERO-F is based on a finite
difference Newton–Krylov method [22–24]. This method is computationally more expensive than that based

on the defect–correction procedure but delivers a better convergence rate and requires less memory. In all

cases, AERO-F relies on the GMRES [25] method preconditioned by the RAS [26] algorithm for solving

iteratively the large sparse linear systems of equations that arise at each Newton-like iteration.

6.1. Forced oscillations of the AGARD Wing 445.6

Here, we consider the simulation of forced oscillations of the AGARD Wing 445.6 [27]. This wing is an

AGARD standard aeroelastic configuration with a 45� quarter-chord sweep angle, a panel aspect ratio of

1.65, a taper ratio of 0.66, and a NACA 65A004 airfoil section. We clamp it at its root and force it to

vibrate according to

x ¼ x0 þ ðxb � x0Þ sinð2pftÞ; ð59Þ

where x0 and xb denote the undeformed position and a position associated with the first bending mode

of this wing (see Fig. 1(a)), respectively, and f denotes here the vibration frequency that is set to 14.92 Hz.



Fig. 1. AGARD Wing 445.6: (a) undeformed (solid) and deformed (solid and wireframe) shapes; (b) isotropic mesh (178,938 nodes);

(c) anisotropic mesh (426,697 nodes).
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We set the freestream conditions to M ¼ 0:5, a ¼ 2�, b ¼ 0�, q ¼ 1:117� 10�7 slugs� ft/in.4, and p ¼ 11

psi.

To begin, we assume that the flow is inviscid and generate a three-dimensional tetrahedral mesh with

178,938 nodes (see Fig. 1(b)). First, we perform one simulation using scheme A and an extremely small
time-step (Dt ¼ 0:00001 s) in order to generate a reference solution in lieu of an ‘‘exact’’ solution until

t ¼ 0:1 s. Then, we compute various solutions of this forced oscillations problem using schemes A–D

and a suite of time-steps varying between Dt ¼ 0:001 and Dt ¼ 0:01 s. In all cases, we perform at each

time-step a sufficiently large number of Newton-like iterations to ensure that the nonlinear system of

equations is properly solved. We report in Fig. 2(a) the measured errors as a function of the time-step in

log–log format. The error is defined as the L2 norm of the vector collecting for all the conservative flow
Fig. 2. Accuracy analysis for forced oscillations of the AGARD Wing 445.6: (a) inviscid flow case; (b) viscous flow case.
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variables and all the grid points the difference between the numerical and reference solutions. The error

associated with scheme A, which is provably second-order time-accurate on moving grids and satisfies

its DGCL, exhibits a slope equal to 2.55. For scheme B which is also provably second-order time-ac-

curate on moving grids but violates its DGCL, the slope of the error curve is equal to 1.83. For schemes

C and D which are provably first-order time-accurate on moving grids, the slope of the error curve is,

respectively, 0.96 and 1.05. Hence, all these numerical results are in good agreement with the theoretical

results presented in this paper.

To highlight the influence of a specific usage of an inexact Newton method on the delivered time-ac-
curacy, we report in Fig. 3 the effect of this usage on the error associated with scheme A. The reader can

observe that when the defect–correction procedure is used (see Fig. 3(a)), more than five Newton iterations

are required for scheme A to achieve a second-order time-accuracy. On the other hand, when scheme A is

equipped with the finite difference Krylov approach, only one Newton-like iteration is needed to achieve a

second-order time-accuracy (see Fig. 3(b)). From this observation and the CPU results summarized in

Table 1, one can conclude that the finite difference Krylov approach is more effective than the defect–

correction procedure. For this reason, all simulations discussed in the remainder of this section have been

performed with two finite difference Newton–Krylov iterations per time-step.
Next, we model the flow by the averaged Navier–Stokes equations supplemented by the Spalart–

Allmaras turbulence model, and set the Reynolds number based on the mean chord to 5� 106. For this

purpose, we generate a three-dimensional tetrahedral mesh with 426,697 nodes (see Fig. 1(c)). Following

the same procedure as in the inviscid case, we report in Fig. 2(b) the variation with the time-step of the error

obtained for schemes A, E and F. The reader can observe that only scheme A in which the viscous fluxes
Fig. 3. Accuracy analysis for forced oscillations of the AGARD Wing 445.6: (a) defect–correction approach; (b) finite difference

Krylov approach.

Table 1

Forced oscillations AGARD Wing 445.6 – CPU time (in seconds) for 100 time-steps on 16 processors SGI Origin 3200

Number of Newton iterations 1 2 5 10

Defect–correction approach 454 795 1744 3225

Finite difference Krylov approach 1024 1814 5339 –
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and source terms are computed at each time-step on the latest mesh configuration delivers a second-order

time-accuracy, which is in agreement with Proposition 2.

6.2. Aeroelastic response of the AGARD Wing 445.6

Here, we consider the simulation of an aeroelastic response of the AGARD Wing 445.6. The structural

model selected here is the so-called 2.5-ft weakened model 3 whose measured modal frequencies and wind-

tunnel flutter test results are reported in [27], and for which computational aeroelastic data can be found

in [28,29]. We construct an undamped finite element structural model of this wing with 800 triangular

composite shell elements and 2646 degrees of freedom using the information given in [27]. This model

yields natural mode shapes and frequencies that are similar to those derived experimentally. We also

construct a three-dimensional tetrahedral fluid mesh that contains 178,938 nodes (see Fig. 1(b)). We
assume that the flow is inviscid and set the freestream conditions to M ¼ 0:901, q ¼ 1:117� 10�7

slugs� ft/in.4 and p ¼ 11 psi. We perturb the finite element structural model along its first bending mode,

and compute a steady-state solution around the deformed configuration of the wing. Next, we use this

perturbation as an initial condition, and compute the aeroelastic response of the wing by a partitioned

procedure for the solution of fluid–structure interaction problems [2]. In this partitioned procedure, the

mid-point rule is used to time-integrate the semi-discrete equations of dynamic equilibrium of the

structural model while the flow field is advanced in time using different extensions on moving grids of the

three-point backward difference scheme.
We perform four computations with schemes A–D and a fluid–structure coupling time-step Dt ¼ 0:001 s.

This time-step corresponds to sampling the period of the first torsional mode of the dry wing in 25 points,

as usually done for any second-order implicit time-integration scheme. Fig. 4 reports the computed

aeroelastic responses and compares them with a reference solution obtained with a time-step Dt ¼ 0:0001 s.

The response obtained by the methods preserving the second-order time-accuracy match nicely the refer-

ence curve and predict that for the given freestream conditions the AGARD Wing 445.6 will not flutter.

This is consistent with the experimental data published in [27] and the computational results are presented

in [28,29]. For the same dimensional coupling time-step, the methods that are only first-order time-accurate
predict erroneously flutter. These results highlight the significance of the mathematical results presented in

this paper on practical fluid–structure applications.
Fig. 4. Vertical force history for the aeroelastic response of the AGARD Wing 445.6 (the curves associated with schemes A and B are

superimposed with the reference curve).
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6.3. Forced oscillations of an F-16 fighter

As a second example for illustrating the impact on industrial applications of the developments presented

in this paper, we simulate the response to forced oscillations of an F-16 fighter configuration in the tran-

sonic regime. We set the freestream conditions to M ¼ 0:9, a ¼ 2�, b ¼ 0�, q ¼ 8:44� 10�8 slugs� ft/in.4

and p ¼ 10:11 psi, and force the fighter to vibrate according to Eq. (59) where the deformed configuration is

taken as twice the static aeroelastic deformation at the same altitude of 10,000 ft (see Fig. 5) and the

frequency of the oscillations is set to 7 Hz. The three-dimensional tetrahedral mesh used for this inviscid

flow simulation contains 403,919 grid points.

Fig. 6 compares the measured errors of schemes A–D as a function of the time-step in log–log format.
Schemes A and B, which are provably second-order time-accurate on moving grids, exhibit error slopes

equal to 1.99 and 2.01, respectively. The error slopes associated with schemes C and D, which are provably

first-order time-accurate on moving grids, are equal to 1.03 and 1.04, respectively. Hence, these results

confirm the applicability of the theoretical results proved in this paper.
Fig. 5. Undeformed (solid) and deformed (solid and wireframe) configurations for an F-16 fighter.

Fig. 6. Accuracy analysis for forced oscillations of an F-16 fighter.



P. Geuzaine et al. / Journal of Computational Physics 191 (2003) 206–227 223
7. Conclusions

Most often, an ALE time-integrator is typically constructed by combining a preferred time-integrator for

fixed grids computations and an ad hoc procedure for evaluating the geometric quantities arising from the

ALE formulation. Such an approach for designing an ALE time-discretization is simple, but does not

necessarily preserve the order of time-accuracy of the underlying basic time-integrator. To address this

issue, we have presented two different methods for extending to moving grids a preferred time-integrator

while preserving its order of time-accuracy established on fixed grids. These methods differ in the ap-
proaches they adopt for time-integrating between time tn and time tnþ1 the convective, diffusive and source

terms, when the grid moves from a position xn to a position xnþ1. For each time-interval ½tn; tnþ1�, the first

method evaluates the numerical fluxes and source terms on a sequence of intermediate mesh configurations,

then time-averages each set of these numerical quantities. The second method constructs a single com-

putational mesh configuration in the time-interval ½tn; tnþ1� by time-averaging a set of intermediate mesh

configurations, then computes the numerical fluxes and source terms on this time-averaged mesh config-

uration. In both methods, the geometric quantities arising from the ALE formulation, the parameters

governing the construction of the intermediate mesh configurations and the time-averaging procedure are
chosen as to guarantee that the resulting ALE time-integrator is formally p-order time-accurate on moving

grids, where p characterizes the underlying fixed grid time-integrator. Each of these two approaches can

lead to multiple ALE versions of a basic scheme that preserve its order of time-accuracy on moving grids.

However, not all of these versions satisfy their discrete geometric conservation laws (DGCL), which shows

that the DGCL is not a necessary condition for an ALE numerical scheme to preserve on moving grids its

order of time-accuracy established on fixed grids. We have also shown that for this purpose, the DGCL is

neither a sufficient condition. Using sample inviscid as well as viscous, unsteady, nonlinear flow problems

associated with the AGARD Wing 445.6 and a complete F-16 configuration, we have highlighted the
importance of preserving a given order of time-accuracy on moving grids, particularly when solving

aeroelastic problems in the time domain.
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Appendix A. First-order time-accurate extension to moving grids of the three-point backward difference

scheme that satisfies its DGCL

The objective of this section is to show that scheme C presented in Section 5.2.1 is first-order time-ac-

curate on moving grids and satisfies its DGCL. Because viscous fluxes do not affect the DGCL [9], we focus

on the inviscid version of scheme C and prove both stated results. Following the same approach presented
here, the reader can easily show that the viscous version of scheme C is also first-order time-accurate on

moving grids.

When a finite volume discretization is applied to the ALE conservative form of the Euler equations

oJu
ot

����
n

þ Jrx � ðF ðuÞ � wuÞ ¼ 0; ðA:1Þ
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the integration over a reference cell Xið0Þ in the n space leads to

d

dt

Z
Xið0Þ

uJ dXn þ
Z
Xið0Þ

rx � ðF ðuÞ � wuÞJ dXn ¼ 0; ðA:2Þ

which, in view of Eqs. (1) and (2), can be transformed into

d

dt

Z
XiðtÞ

u dXx þ
Z
XiðtÞ

rx � ðF ðuÞ � wuÞ dXx ¼ 0: ðA:3Þ

Integrating by part the second term in the above equation gives

d

dt

Z
XiðtÞ

u dXx þ
Z
oXiðtÞ

ðF ðuÞ � wuÞ � l ds ¼ 0; ðA:4Þ

where l denotes the unitary normal to the cell boundary oXi. Let V ðiÞ denote the set of vertices connected
to vertex i, and for each j 2 V ðiÞ, let oXij ¼ oXi \ oXj. The second term in Eq. (A.4) can be evaluated on an

interface-by-interface basis as follows:Z
oXiðtÞ

ðF ðuÞ � wuÞ � l ds ¼
X
j2V ðiÞ

Z
oXijðtÞ

ðF ðuÞ � wuÞ � lij ds; ðA:5Þ

where lij is the unitary normal to oXij. Typically, each term in the above sum is approximated by a nu-

merical flux function U – for example, using an (approximate) Riemann solver [13] – in the following

manner:Z
oXijðtÞ

ðF ðuÞ � wuÞ � lij ds � Uðui; uj; mij; jijÞ; ðA:6Þ

where the non-unitary normal and normal velocity to the cell boundary oXij are given by

mij ¼
Z
oXijðtÞ

lij ds; ðA:7Þ
jij ¼
Z
oXijðtÞ

w � lij ds: ðA:8Þ

Finally, substituting Eq. (A.6) into Eq. (A.4) and time-integrating Eq. (A.4) with the three-point

backward difference scheme gives

3

2
ðXuÞnþ1

i � 2ðXuÞni þ
1

2
ðXuÞn�1

i þ Dt
X
j2V ðiÞ

Uðunþ1
i ; unþ1

j ; �mmij; �jjijÞ ¼ 0; ðA:9Þ

where �mmij and �jjij denote the respective discrete values of mij and jij that need to be determined in order to

complete the description of the above scheme.

The DGCL associated with the above scheme is obtained by assuming a constant solution u ¼ u� 6¼ 0.

Hence, Eq. (A.9) becomes

3

2
Xnþ1

i u� � 2Xn
i u

� þ 1

2
Xn�1

i u� þ Dt
X
j2V ðiÞ

Uðu�; u�; �mmij; �jjijÞ ¼ 0: ðA:10Þ

In general, the numerical flux is required to be consistent so that

Uðu�; u�; �mmij; �jjijÞ ¼ F ðu�Þ � �mmij � �jjiju�: ðA:11Þ
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This transforms Eq. (A.10) into

u�
3

2
Xnþ1

i

 
� 2Xn

i þ
1

2
Xn�1

i � Dt
X
j2V ðiÞ

�jjij

!
þ DtF ðu�Þ �

X
j2V ðiÞ

�mmij ¼ 0: ðA:12Þ

However,X
j2V ðiÞ

�mmij ¼ 0 ðA:13Þ

because the cells are required to remain closed during the mesh motion. Hence, Eq. (A.12) becomes

3

2
Xnþ1

i � 2Xn
i þ

1

2
Xn�1

i ¼ Dt
X
j2V ðiÞ

�jjij ðA:14Þ

which is the DGCL associated with scheme (A.9). The above equation can also be rewritten as

3

2
DXnþ1

i � 1

2
DXn

i ¼ Dt
X
j2V ðiÞ

�jjij; ðA:15Þ

where

DXnþ1
i ¼ Xnþ1

i � Xn
i ¼

X
j2V ðiÞ

DXnþ1
ij ðA:16Þ

and

DXnþ1
ij ¼

Z tnþ1

tn

Z
oXijðtÞ

w � lij ds dt ðA:17Þ

is the volume swept by the part of the control volume interface between nodes i and j during the time-

interval ½tn; tnþ1�. This term can be computed by the formula given in [5,30]. Therefore, Eq. (A.15) becomes

3

2

X
j2V ðiÞ

DXnþ1
ij � 1

2

X
j2V ðiÞ

DXn
ij ¼ Dt

X
j2V ðiÞ

�jjij ðA:18Þ

and thus computing the normal velocity as

�jjij ¼
3
2
DXnþ1

ij � 1
2
DXn

ij

Dt
ðA:19Þ

guarantees that scheme (A.9) satisfies its DGCL regardless of how �mmij is evaluated.
Now, following the same argument as in Section 4, the local truncation error of the ALE scheme (A.9) is

Wi ¼ Dt
X
j2V ðiÞ

rmijUðuiðtnþ1Þ; ujðtnþ1Þ; mijðtnþ1Þ; jijðtnþ1ÞÞð�mmijðtnþ1Þ � mijðtnþ1ÞÞ

þ Dt
X
j2V ðiÞ

rjijUðuiðtnþ1Þ; ujðtnþ1Þ; mijðtnþ1Þ; jijðtnþ1ÞÞð�jjijðtnþ1Þ � jijðtnþ1ÞÞ

þ Dt
X
j2V ðiÞ

Oðk�mmijðtnþ1Þ � mijðtnþ1Þk2 þ k�jjijðtnþ1Þ � jijðtnþ1Þk2Þ þOðDt3Þ: ðA:20Þ
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From Eqs. (A.17) and (A.8), it follows that

DXnþ1
ij ¼

Z tnþ1

tn
jij dt ¼

Z tnþ1

tn
jijðtnþ1Þ
�

þ djij

dt
ðtnþ1Þðt � tnþ1Þ þOðDt2Þ

�
dt

¼ jijðtnþ1ÞDt � 1

2

djij

dt
ðtnþ1ÞDt2 þOðDt3Þ ðA:21Þ

and a similar argument applied to DXn
ij gives

DXn
ij ¼ jijðtnþ1ÞDt � 3

2

djij

dt
ðtnþ1ÞDt2 þOðDt3Þ: ðA:22Þ

Hence, from Eqs. (A.19), (A.21) and (A.22), the quantity �jjij � jijðtnþ1Þ is OðDt2Þ. From Eqs. (32) and (21),

it follows that the quantity �mmijðtnþ1Þ � mijðtnþ1Þ is OðDtÞ if �mmij ¼ mnij, and therefore Wi ¼ OðDt2Þ which proves

that the ALE scheme (A.9) with this choice of parameters �mmij and �jjij is only first-order time-accurate on

moving grids.

Remark. We note however that a second-order time-accurate version of scheme (A.9) can be constructed.

Choosing �mmij ¼ mnþ1
ij makes the quantity �mmijðtnþ1Þ � mijðtnþ1Þ become OðDt2Þ. Consequently, the local trun-

cation error is OðDt3Þ which proves that this version of the ALE scheme (A.9) is second-order accurate on

moving grids.
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